import numpy as np
import pandas as pd
import random
Clone size distributions
= 1000
n = 1000000
nr_of_steps = np.zeros((nr_of_steps + 1, n))
cell_ids 0, ] = range(n)
cell_ids[
for i in range(1, nr_of_steps + 1):
= cell_ids[i - 1, ]
cell_ids[i, ] = random.randint(0, n - 1)
ii_death = random.randint(0, n - 1)
ii_birth = cell_ids[i - 1, ii_birth]
cell_ids[i, ii_death]
=True)) np.column_stack(np.unique(cell_ids[nr_of_steps], return_counts
array([[ 857., 1000.]])
= 20
n = 100
nr_of_steps = np.arange(n)
cell_ids
for i in range(nr_of_steps):
= random.randint(0, n - 1)
ii_death = random.randint(0, n - 1)
ii_birth = cell_ids[ii_birth]
cell_ids[ii_death]
=True)) np.column_stack(np.unique(cell_ids, return_counts
array([[ 0, 7],
[ 4, 6],
[ 5, 3],
[18, 4]])