library('tidyverse')
library('faraway')
set.seed(1)
Model diagnostics for logistic regression
<- 100
n <- tibble(x1 = rnorm(n),
dat x2 = rnorm(n),
x3 = rnorm(n),)
<- model.matrix(~ ., data = dat)
X <- rnorm(ncol(X))
beta
<- dat |>
dat mutate(mu = X %*% beta,
p = plogis(mu),
result = rbinom(n, 1, p))
<- glm(result ~ x1 + x2 + x3, data = dat, family = binomial())
fitted_model
plot(fitted_model)
prplot(fitted_model, 1)
prplot(fitted_model, 2)
prplot(fitted_model, 3)